Unexpected observation of splitting of skyrmion phase in Zn doped Cu2OSeO3
نویسندگان
چکیده
Polycrystalline (Cu1-xZnx)2OSeO3 (0≤x≤0.2) samples were synthesized using solid-state reaction and characterized by X-ray diffraction (XRD). The effect of Zn doping upon saturation magnetization (MS) indicates that the Zn favors to occupying Cu(II) square pyramidal crystallographic site. The AC susceptibility (χ'ac) was measured at various temperatures (χ'ac-T) and magnetic field strengths (χ'ac-H). The Zn doping concentration is found to affect greatly the M-T and χ'ac-T. The skyrmion phase has been inferred from the χ'ac-H data, and then indicated within the H-T phase diagrams for various Zn doping concentrations. The striking and unexpected observation is that the skyrmion phase region becomes split upon Zn doping concentration. Interestingly, second conical boundary accompanied by second skyrmion phase was also observed from dχ'ac/dH vs. H curves. Atomic site disorder created by the chemical doping modulates the delicate magnetic interactions via change in the Dzyaloshinskii-Moriya (DM) vector of distorted Cu(II) square pyramidal, thereby splitting of skyrmion phase might occur. These findings illustrate the potential of using chemical and atomic modification for tuning the temperature and field dependence of skyrmion phase of Cu2OSeO3.
منابع مشابه
Coupled Skyrmion sublattices in Cu(2)OSeO(3).
We report the observation of a Skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct Skyrmion sublattices that arise from inequivalent Cu sites with chemically identical coordination numbers but different magnetically active orbitals. The Skyrmion sublattices are rotated with respect t...
متن کاملMagnetoelectric effects in the skyrmion host material Cu2OSeO3
Insulating helimagnetic Cu2OSeO3 shows sizeable magnetoelectric effects in its skyrmion phase. Using magnetization measurements, magneto-current analysis and dielectric spectroscopy, we provide a thorough investigation of magnetoelectric coupling, polarization and dielectric constants of the ordered magnetic and polar phases of single-crystalline Cu2OSeO3 in external magnetic fields up to 150 m...
متن کاملElectric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3.
Uniquely in Cu2OSeO3, the Skyrmions, which are topologically protected magnetic spin vortexlike objects, display a magnetoelectric coupling and can be manipulated by externally applied electric (E) fields. Here, we explore the E-field coupling to the magnetoelectric Skyrmion lattice phase, and study the response using neutron scattering. Giant E-field induced rotations of the Skyrmion lattice a...
متن کاملDramatic pressure-driven enhancement of bulk skyrmion stability
The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Hall-effect and a spin-transfer torque at ultra-low current densities. In the insulating compound Cu2OSeO3, magneto-electric coupling enables c...
متن کاملTransition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound
Dissipation-less electric control of magnetic state variable is an important target of contemporary spintronics. The non-volatile control of magnetic skyrmions, nanometre-sized spin-swirling objects, with electric fields may exemplify this goal. The skyrmion-hosting magnetoelectric chiral magnet Cu2OSeO3 provides a unique platform for the implementation of such control; however, the hysteresis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015